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NASA TT F-12,005 

A N E W  ANALYSIS OF MOLECULE DIMENSIONS 

A. E i n s t e i n  

ABSTRACT: I t is shown tha t  t h e  s i z e  of t h e  molecules of a 
substance dissolved i n  an undissociated d i l u t e  so lu t ion  can 
b e  determined from t h e  internal  f r i c t i o n  of t h e  solut ion i n  
i n  t h e  solvent  and diffusion of the dissolved substance i n  
t h e  so lvent ,  providing t h e  molecular volume of t h e  dissolved 
substance is g rea t e r  than tha t  of t h e  so lvent .  T h i s  is 
done by applying hydrodynamic equations to  t h e  so lvent ,  
considering t h e  1 i q u i d  i s  homogeneous and therefore  without 
mol ecul a r  s t ruc tu re  . 

. T h e  o ldes t  determination of  t h e  t r u e  magnitude of  t h e  molecule was made / 2 8 9 *  
possible  by the  k i n e t i c  theory of gases, while physical  phenomena observed i n  

- l iqu ids  have not y e t  been of se rv ice  i n  determining molecule sizes.  

This is undoubtedly based on t h e  d i f f i c u l t i e s ,  insuperable up t o  now, which 
oppose the  development of  a de ta i led  molecular-kinet ic  theory of l i qu ids ,  In  
t h i s  work it w i l l  now be shown t h a t  t h e  magnitude o f  t he  molecules of t h e  
material dissolved i n  an undissociated d i l u t e  so lu t ion  can be determined from 
the  i n t e r n a l  f r i c t i o n  o f  t h e  so lu t ion  i n  t h e  pure solvent  and from t h e  d i f fus ion  
o f  t h e  dissolved mater ia l  i n  t h e  solvent ,  i f  t he  volume of one molecule of t he  
dissolved material is  la rger  than t h e  volume of a molecule of t he  solvent .  This 
i s  because a dissolved molecule of t h i s  type w i l l  behave app-oximately l i k e  a 
s o l i d  body suspended i n  the  solvent  i n  regard t o  i t s  mobili ty i n  t h e  solvent 
and i n  regard t o  i t s  inf luence on t h e  in t e rna l  f r i c t i o n  of  t he  solvent ,  and it 
w i l l  be possible  t o  apply t o  t h e  movement o f  t h e  solvent immediately next t o  a 
molecule t h e  hydrodynamic equations i n  which the  l i qu id  i s  considered as 
homogeneous, therefore  not considered as having a molecular s t ruc tu re .  
shape of  t h e  s o l i d  bodies,  which a r e  t o  represent t he  dissolved molecules , - le t  
us choose spheres.  

9 1 .  The  Influence of a Very Small Sphere Suspended i n  a L i q u i d  Upon t h e  

For t h e  

Movement of t ha t  L i q u i d .  * 

Let an incomprehensible homogeneous l i qu id  with coef f ic ien t  of f r i c t i o n  k 
l i e  a t  t h e  bas i s  o f ,  t h i s  consideration with ve loc i ty  components u, D, w 
given as funct ions i f  t h e  coordinates 2, y, z and time. 

z - z developed according t o  the Taylor s e r i e s ;  and such a small area G be 

Beginning a t  any poin t  
z0, yo,zo, l e t  us  imagine t h e  functions u, D, w as functions of x - xO, y - 90' 

/ 2 9 0  0 
"Numbers i n  t h e  margin ind ica t e  pagination i n  t h e  foreign t e x t .  
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l imited around t h i s  point  t h a t  within it only the  l i n e a r  members of t h i s  develop- 
ment can be considered. 
i s  known, be understood as the  superposit ion of  t h r e e  movements, v iz .  

The movement of t h e  f l u i d  contained i n  G can then, as 

1. a p a r a l l e l  displacement of  a l l  f l u i d  p a r t i c l e s  without any a l t e r a t i o n  
i n  t h e i r  r e l a t i v e  pos i t ion ,  

2. c i r c u l a t i o n  of t h e  l iqu id  without a l t e r a t i o n  i n  the r e l a t i v e  pos i t ion  
of t h e  f l u i d  p a r t i c l e s ,  

3 .  an expansion movement i n  t h r e e  d i rec t ions  perpendicular t o  each other  
(the main expansion d i r e c t i o n ) .  

Now l e t  us imagine i n  area G a r i g i d ,  spherical  body, t h e  midpoint of 
which l ies  a t  point  xo, yo, zo and the  dimensions of which a r e  much smaller than 

t h a t  of a rea  G. . Let us f u r t h e r  assume t h a t  t h e  movement under consideration i s  
so  slow t h a t  t h e  k i n e t i c  energy of t h e  sphere, as well as t h a t  of t h e  l iqu id ,  
can be disregarded. 

- a surface element of the  sphere correspond 
components of t h e  adjacent f l u i d  p a r t i c l e s ,  i . e .  t h a t  t h e  separation layer  
(thought of as continuous) exhib i t s  a f i n i t e l y  small coef f ic ien t  of i n t e r n a l  
f r i c t i o n  everywhere. 

Let it f u r t h e r  be assumed t h a t  t h e  ve loc i ty  components of 
with t h e  corresponding ve loc i ty  

,. 
I t  is  immediately c l e a r  t h a t  the  sphere p a r t i c i p a t e s  simply i n  p a r t i a l  

movements 1. and Z., without modifying t h e  movement of the  adjacent f l u i d ,  s ince  
the f l u i d  behaves as a r i g i d  body i n  these p a r t i a l  movements and s ince  we over- 
look t h e  e f f e c t s  of i n e r t i a .  

However, movement 3 .  i s  modified by the presence of the  sphere and our 
next task  w i l l  be t o  inves t iga te  the  influence of t h e  sphere on t h i s  f l u i d  
movement. 
t o  t h e  main expansion d i rec t ions ,  and i f  we p o s i t  

If we equate movement 3. t o  a coordinate system with axes p a r a l l e l  

t h a t  movement, i f  t h e  sphere is  not present ,  can be represented by t h e  equations:/291 

A ,  B ,  C are constants which, because of the imcompressibility of the  l iqu id ,  
f u l f i l l  t h e  condition: 

(2) 
rf+ B + C = O .  
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If the  r i g i d  sphere with radius  P now f inds  i tself  a t  po in t  xoy yo' zo,  

t he  f l u i d  movement i s  a l t e r ed  i n  i t s  a f f i n i t y .  For t h e  sake of convenience we 
s h a l l  denote below P as " f in i t e t ' ,  but t h e  values of 5, II, 5 ,  fo r  which the  f l u i d  
movement i s  no longer modified by the  sphere, as " i n f i n i t e l y  large". 

Because of  t h e  symmetry o f  t h e  f l u i d  movement under consideration, i t  i s  
then clear t h a t  t he  sphere i s  incapable of producing e i t h e r  a t ransference o r  

. a t u r n . i n  the  movement under considerat ion,  as w e  obtain the  boundary conditions:  

i n  which 

is  posi ted.  Here u ,  v ,  w s ign i fy  t h e  ve loc i ty  components of  t h e  movement now 
. _. considered (modified by t h e  sphere) .  If w e  p o s i t  

i (3) 

the  v e l o c i t i e s  ul, vl,  w1 would have t o  disappear i n t o  i n f i n i t y ,  s ince  the  

movement presented i n  equations (3) is  t o  be converted i n  i n f i n i t y  i n t o  the  
movement presented i n  equations (1). 

The functions u ,  v, w must s a t i s f y  the  equations of hydrodynamics with 
consideration of i n t e r n a l  f r i c t i o n  and disregard f o r  i n e r t i a ,  
ing equations a r e  va l id  [l] 

Thus the  follow- /292 

i n  which A s i g n i f i e s  the  operator 

and p t h e  hydros ta t ic  pressure.  

Since equations (1) a re  so lu t ions  of equations (4) and s ince  t h e  l a t te r  

and p according t o  a method given i n  9 4 of 

w must a l so  s a t i s f y  equations (4) according 1' vl ,  1 a r e  l i nea r ,  t h e  magnitudes u 
t o  ( 3 ) .  I determined u19 vl, w 1 
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Kirchhoff's l ec tu re  mentioned above1 and found: 
/293 

i n  which 

lrtFrom equations (4) it follows t h a t  Ap = 0. If p i s  presumed i n  accord 
with t h i s  condition and i f  a function V i s  determined which s a t i s f i e s  t h e  
equation 

1 
k 

' r l v = - p  

equations (4) a r e  f u l f i l l e d  i f  w e  p o s i t  

and choose u', o r ,  w' so  t h a t  Au' = 0, Au' = 0 and Aw' = 0 and 

If we now p o s i t  
1 '  a i -  e,,,-- e '  

k . a E P  

and i n  harmony with t h i s  

and . . .  .:.. . - .  . . . . . .. . 

constants  a, b ,  c can be so  set  t h a t  for p = P, u = v = w = 0. By superposing 
th ree  so lu t ions  of t h i s  type,  t h e  so lu t ion  given i n  equations (5) and (Sa) are 
obtained. 
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. I t  is easy t o  prove t h a t  equations (5) a r e  solut ions of equations (4). Then 
s ince 

and 
a -  = - -a-g { d ($)} = 0, 

we get  

. 

t o  the  first of equations (5). 
t h i r d  of  equations (4) a r e  f u l f i l l e d .  In addition we ge t  

However, the  expression obtained l a s t  is  i d e n t i c a l  with a o / a g  according 
In the  same way it  is  shown t h a t  the second and 

a v  a z v  
a E . a 71 5 __ f r- $- -g-' = ( A  + R -+ C) ' 

However, s ince  according t o  equation (sa) /294 

it follows t h a t  the  last  of equations (4) is  a l so  f u l f i l l e d .  As far as t h e  
boundary conditions are concerned, our equations f o r  u, z), w a r e  then converted 
i n t o  equations (1) f o r  i n f i n i t e l y  large p .  By introducing t h e  value of D from 
equation (Sa) i n t o  t h e  second of equations (S), we get: 
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I t  is  recognized t h a t  u disappears f o r  p = P .  
for  reasons of symmetry. 
provided f o r  both equations (4) and t h e  boundary conditions of t h e  problem by 
equations (5). 

The same is  va l id  f o r  v and w 
Now it should be demonstrated t h a t  s a t i s f a c t i o n  i s  

I t  can a l s o  be proven t h a t  equations (5) a r e  t h e  only so lu t ion  of 
equations (4) compatible with the  boundary conditions of t h e  problem. Here t h e  
proof is  only t o  be indicated.  
of a l i qu id  may s a t i s f y  equations (4).  If  t he re  s t i l l  e x i s t s  another so lu t ion  
of U, V ,  W of equations (4), i n  which U = u ,  V = v ,  W = w at  t h e  boundaries of 
t h e  space considered, t hen  (U - u, V - v, W - w )  is a so lu t ion  o f  equation (4),  
i n  which t h e  ve loc i ty  components disappear a t  the  boundary of t h e  space. 
no mechanical work is  supplied t o  the  f l u i d  found i n  the  space under considera- 
t i o n .  Since we have disregarded t h e  momentum of t h e  l i qu id ,  it follows t h a t  
t h e  work changed i n t o  heat  i n  t h e  space under considerat ion i s  a l s o  equal t o  
zero. From t h i s  it i s  deduced t h a t  i n  the  e n t i r e  space u = ul ,  v = !l, w = w 

ob l iga to r i ly ,  i n  case t h e  space i s  a t  l e a s t  p a r t i a l l y  bounded by contiguous 
wal ls .  
where t h e  space under considerat ion i s  i n f i n i t e ,  a s  i n  t h e  above considered case. 
I t  can a l s o  be v e r i f i e d  t h a t  t h e  
the  problem. 

In f i n i t e  space the  ve loc i ty  components u ,  v ,  w _  

Thus 

1 

By going beyond t h e  bounds t h i s  r e s u l t  can also be extended t o  t h e  case 

so lu t ion  found above is  the  only so lu t ion  of 

Now we lay out a sphere of radius  R around point  x 0' yo, zo where R is  

This energy 
If we 

/295 

i n f i n i t e l y  la rge  i n  cont ras t  t o  P ,  and we compute the  energy which i s  transformed 
i n t o  hea t  i n  the  f l u i d  found ins ide  the  sphere ( in  a u n i t  of time). 
W is  equal t o  t h a t  of t h e  work mechanically supplied t o  the  l iqu id .  
designate  the  compments of t h e  pressure exerted on the surface of t h e  sphere 
of rad ius  R with Xn, Yn, Zn, then: 

i n  which t h e  i n t e g r a l  is t o  be extended over t h e  surface of  t he  sphere of radius  
R. Here: 

6 



1 i n  which 

Ys = 2, ='- k --+-- , (;; :z;) a z 6  - ,xi = p - 2 K -- 
a t '  

The expressions f o r  u, V~ t3 are s implif ied i f  w e  observe t h a t  f o r  p = R the  mem- 

bers with the  f a c t o r  P 5 / p 5  disappear i n  contrast  t o  those with t h e  f a c t o r  P 3 / p 3 .  
We must p o s i t :  

From t h e  f irst  of  equations (5),  by corresponding omissions, w e  g e t ' f o r  p 

- i: 

BEs+ Eaq -!- CtP 
p = - 5 k P 3  3-, const. e6 

and from here 

With the  a id  of t h e  expressions f o r  Yn and ZnJ t o  be derived by c y c l i c  

subs t i tu t ion ,  along with the omission of a l l  members which contain the  r a t i o  
P /p  i n  a power higher than t h e  t h i r d ,  we ge t :  

/296 

7 



If we in t eg ra t e  over t h e  sphere and consider t h a t  

w e  obtain:  

i n  which 

and 

.. + Z P 3  = (I, 

are pos i ted .  
obtained f o r  t h e  energy consumed i n  the  volume V 

If the  suspended sphere were not present  (a, = 0 ) ,  we would have 

Thus the  presence of the  sphere diminishes t h e  energy consumed by 262k@. 
worth noting t h a t  t h e  inf luence of t h e  suspended sphere on the  magnitude of the  
energy consumed i s  j u s t  as la rge  as it would have been i f  the  movement o f  t he  
f l u i d  surrounding the  sphere were not a t  a l l  modified by i t s  presence. 

5 2. Computation o f  t h e  Coeff ic ient  of Fr ic t ion of a F l u i d  i n  w h i c h  Very Many 
Small Spheres a r e  Suspended i n  I r regular  Distr ibut ion.  

I t  is  /297 

We have j u s t  considered the  case where a sphere, r e l a t i v e l y  very small ,  i s  
suspended i n  an a rea  G o f  the  above defined order  o f  magnitude and have inves t i -  
gated how t h e  sphere influences the  f l u i d  movement. 
i n f i n i t e l y  many spheres a r e  i r r e g u l a r l y  d i s t r i b u t e d  i n  t h e  a rea  G with i d e n t i c a l  * 
r a d i i  so  small t h a t  the  volume of  a l l  t h e  spheres together  is  very small i n  
cont ras t  t o  t h e  a rea  G. 

We s h a l l  now assume t h a t  - 

Let the  number of spheres occurring i n  t h i s  u n i t  of 



volume be n ,  i n  which n i s  constant as fa r  as it matters every place i n  the  
f l u i d .  

We s h a l l  now proceed f u r t h e r  from t h e  movement of  a homogeneous l i qu id  
without suspended spheres and again consider the  most general expansion move- 
ment. 
represent t he  ve loc i ty  components u 
by the  equations: 

If small spheres a re  present ,  a s u i t a b l e  choice w i l l  enable us t o  
a t  any point  x, y ,  z of a rea  G v o ,  w 0' 0 

uo = dz, 

' vo .?BY? 
' . wo = c z ,  

_ _  -. 
i n  which 

z now influences t h e  movement i n  a way v' v' v 
A sphere suspended a t  po in t  x. 
v i s i b l e  from equation (6).  Since we s e l e c t  the mean dis tance between adjacent 
spheres as much l a rge r  than t h e i r  r a d i i ,  and s ince  consequently the  admissible 
ve loc i ty  components of a l l  suspended spheres touching each o ther  are-small when /298 
compared t o  u o, v 0 ,  u0, f o r  t he  ve loc i ty  components u ,  v ,  w 

suspended i n  the  f l u i d  under consideration and with omission of the  members o f  
higher orders ,  we ge t :  

of t he  spheres 

-. 

i n  which summation is  t o  be extended over a l l  spheres of a rea  G and 

. .  = 2 - z* 
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a r e t o  - be posi ted.  

spheres. We f u r t h e r  determine from equations (7) and (7a) t h a t  the  presence 
of  each of the  cubes up t o  an i n f i n i t e l y  small higher order has as a consequence 
a reduction i n  hea t  production per  u n i t  of time of 2S21cQ, and t h a t  t h e  energy 
converted i n t o  heat  i n  t h e  area G per  u n i t  of  volume has the value: 

x,,, y,,, x,, a r e  t h e  coordinates of the  midpoints of  t h e  

or  

where 9 s i g n i f i e s  the f r a c t i o n  of the volume taken up by the spheres. /299 

Equation (7%) produces the  l ikel ihood t h a t  t h e  coef f ic ien t  of f r i c t i o n  of 
t h e  heterogeneous mixture of f l u i d  and suspended spheres considered by us 

- (hereaf ter  "mixture" f o r  short:) i s  smaller than t h e  coef f ic ien t  of f r i c t i o n  k 
o f  the f l u i d .  However, t h i s  is  not the  case, s ince  A ,  B ,  C a r e  not t h e  values 
o f  t h e  main expansions of the f l u i d  movement presented i n  equations (8);  we 
s h a l l  name the  main expansions o f  t h e  mixture Ax, B x ,  I?. 

symmetry it follows t h a t  the  main expansion d i rec t ions  of t h e  mixturg are 
p a r a l l e l  t o  t h e  d i rec t ions  of the main expansions A ,  B ,  C, thus t o  t h e  coordi- 
nate  d i r e c t i o n s .  Let us write equations (8) i n  the  forin: 

From reasons of  

and we get :  

A= = (g) 1 ="+A(k) \, d1C = A . - Z ( - L )  a 2L . 
x=o a=O a x ,  2=0 

If w e  exclude t h e  immediate surroundings o f  the individual  spheres from consi- 
derat ion,  we can omit the  second and t h i r d  members o f  the  expressions of u, ZI, w 
and f o r  x = y = z = 0 get :  

p3 z,(dz: 4- By; 4- cz:) -- . u, = c -5. - 
4 t-2 . p;" 

10 



where 
. .  . .  

Z-, = i G ; ? + - > i  > 0 
. .  

is  posi ted.  
large radius R of which the midpoint l ies  i n  the  o r i g i n  of coordinates. 
f u r t h e r  consider the  irregularly d i s t r i b u t e d  spheres as uniformly d i s t r i b u t e d  
and replace the  sum with an i n t e g r a l ,  we get :  

Let us extend the  summation over the volume of a sphere K of very 
If we 

/300 

where t h e  las t  i n t e g r a l  i s  t o  be extended over the surface of the  sphere K. 
Considering (9) w e  f ind:  

Is- analagously 

B” = q 1  - y), 

c*= C(1 -+). 
- 

If‘we p o s i t  

then up t o  an i n f i n i t e l y  small higher order:  

For heat  development p e r  u n i t  of time and volume we have found: 

?Y* = 2 Plr (1 - y). 

If we designate the coef f ic ien t  of  f r i c t i o n  o f  t h e  mixture with k * ,  then: 

11 



From t h e  l a s t  three  equations, omitting the i n f i n i t e l y  small higher order,  w e  
get :  

Thus we g e t  the  r e s u l t :  

If very small r i g i d  spheres a r e  suspended i n  a l i q u i d ,  the  coef f ic ien t  of 
i n t e r n a l  f r i c t i o n  increases by a f rac t ion  which i s  equal t o  t h e  t o t a l  volume of  /301 
t h e  spheres suspended i n  the  u n i t  of volume, provided t h a t  t h i s  t o t a l  volume i s  
very small. 

§ 3. T h e  Volume o f  a Dissolved Substance o f  Large Molecular Volume i n  Comparison 
to  t h e  Solvent. 

L e t  there  be a d i l u t e  so lu t ion  of a mater ia l  which i s  undissociated i n  t h e  
so lu t ion .  
of  the  solvent and be assumed t o  be a r i g i d  sphere o f  radius  P.  
apply the  r e s u l t  obtained i n  § 2. 
of t h e  so lu t ion ,  k signifies t h a t  of t h e  tear solvent ,  s o  t h a t :  

Let one molecule of t h e  dissolved substance be l a r g e r  than a molecule 
Then we can 

If k* s i g n i f i e s  the coef f ic ien t  of  f r i c t i o n  

i n  which #I is the  t o t a l  volume of t h e  molecules found i n  t h e  solut ion per  un i t  
o f  volume. 

We wish t o  compute #I f o r  a 1% aqueous sugar solut ion.  According t o  t h e  
observations of Burkhard (Tables of Landolt and Bornstein) k*/k = 1.0245 (at 
20°C) in '  a 1% aqueous sugar solut ion,  and thus #I = 0,0245 f o r  (almost exactly) 
0.01 grams of sugar. 
influence on i t s  coef f ic ien t  of  f r i c t i o n  as small, suspended r i g i d  spheres of 
a t o t a l  volume of 2.45 cm3.  

Thus 1 gram of sugar dissolved i n  water has the same 

I t  should now be reca l led  t h a t  1 g of  s o l i d  sugar possesses a volume of  
0.61 cm3. 
found i n  solut ion,  i f  w e  assume t h e  sugar so lu t ion  t o  be a mixture of water 
and sugar i n  a dissolved form. 
( referred t o  water of the same temperature) a t  17.5" is  a c t u a l l y  1.00388. 
(disregarding the  difference i n  densi ty  of water a t  4" and water a t  17.5"), we 
get :  

The same volume i s  a l s o  found f o r  t h e  s p e c i f i c  volume s of t h e  sugar 

The densi ty  of a 1% aqueous sugar so lu t ion  
Thus 

1 - = 0,09 + 0,Ol S; 
1,OOSSS 

thus 
' 8  = 0,61. . .  

Thus, while t h e  sugar so lu t ion  i n  respect t o  i t s  densi ty  behav 
nce on the  i n t e r n a l  fri mixture of  water and s o l i d  sugar, i t s  i n f l  

1 2  



four times greater than would r e s u l t  from merely suspending t h e  same amount of  
sugar. I t  seems t o  me t h a t  t h i s  r e s u l t ,  i n  t he  sense o f  molecular theory,  can 
hardly be explained except by assuming. t h a t  a sugar molecule i n  so lu t ion  regards 
the  mobili ty of t he  immediately adjacent water s o  t h a t  a quant i ty  of water, oE 
which t h e  volume i s  about t h ree  times t h e  volume o f  t h e  sugar molecule, i s  
chained t o  the  sugar molecule. 
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We may thus say t h a t  a dissolved sugar molecule (or  t he  molecule along 
with the  water held fas t  by i t )  behaves i n  a hydrodynamic r e l a t ionsh ip  l i k e  a 
sphere o f  volume 2.45 342@cm3, where 342 i s  the  molecular weight of  t h e  
sugar and N t h e  number of ac tua l  molecules i n  1 g molecule. 

5 4 .  The Diffusion of an Undissociated Material in a F l u i d  Solution. 

Let the re  be a so lu t ion  l i k e  t he  one considered i n  9 3. If a power K 
effects the  molecule, which we consider as a sphere of  radius  P a  t h e  molecule 
moves with a vel-ocity w which i s  determined by P and the  coe f f i c i en t  o f  equa- 
t i o n  k of  the  solvent .  This i s  equation (22) o f  Kirchhoff's work [l] : 

K 
6 n k P  

w =--, 

i. 

We s h a l l  use t h i s  equation t o  compute the  coe f f i c i en t  of  d i f fus ion  of  an 
If p s i g n i f i e s  t he  osmotic pressure o f  t he  dissolved ssociated so lu t ion .  

substance, which may be regarded as the  only exc i t ing  power 
so lu t ion  under consideration, t h e  power exercised on the  dissolved substance 
per  u n i t  of volume of t he  so lu t ion  i n  the d i r ec t ion  of  t he  X-axis is  - d p [ d x  
If p grams are found i n  a u n i t  of  volume and i f  m is  the  molecular weight of 
the  dissolved material, N the  number of ac tua l  molecules i n  a gram molecule, 
( p / m ) N  i s  the  number of  (actual)  molecules i n  the  u n i t  of volume and t h e  power 
exercised on one molecule as a r e s u l t  of t he  concentration gradient  i s :  

i n  the  d i l u t e  

I 
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If t h e  so lu t ion  is  d i lu t ed  enough, the  osmotic pressure is  given by the  
equation: 

R 
P = ;-c, (3) 

where T is  t h e  absolute  temperature and R = 8.31 lo7 .  
and (3), f o r  t h e  ve loc i ty  of migration of  the  dissolved substance, we get :  

From equations ( l ) ,  (2) 

13 



Fina l ly ,  t h e  amount of  mater ia l  going through i n  t h e  d i r ec t ion  of t he  X- 
ax i s  per  u n i t  of time through one u n i t  of  cross-sect ion is  : 

Thus f o r  t he  coe f f i c i en t  of  d i f fus ion  D w e  get 

T h u s ' i t  i s  poss ib le  t o  compute the  product of t h e  number N of ac tua l  molecules 
i n  a gram molecule and the  hydrodynamically ac t ive  molecular radius  P from t h e  
coe f f i c i en t  of  d i f fus ion  and the  coe f f i c i en t  o f  t he  i n t e r n a l  f r i c t i o n  of t h e  
solvent .  

In t h i s  der iva t ion  the  osmotic pressure has been considered as a power 
working on the  individual  molecules, which obviously does not correspond t o  the  
concept of  t he  k i n e t i c  molecular theory,  s ince  according t o  the  lat ter,  t he  
osmotic pressure i n  the  present  case i s  only t o  be understood as an apparent 
power. However, t h i s  d i f f i c u l t y  disappears if we r e f l e c t  on the fact t h a t  t h e  
(dynamic) equilibrium can be provided f o r  t he  (apparent) osmotic pocers,  which 

rrespond t o  the  concentration differences of t h e  so lu t ion ,  by the  powers 
operating on t h e  individual  molecules and both numerically equal and d i rec ted  
opposite t o  them, as can be e a s i l y  understood i n  a thermodynamicmanner. 
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The equilibrium can be provided f o r  t he  osmotic power 

working on a u n i t  of mass by the  power -P 
dissolved molecules), i f  

(dealing only with the  ind iv idua l ly  
X 

If we thus think of t h e  dissolved substance (per u n i t  of  mass) , 'deal ing 
with t h e  two mutually occurring power systems Px and -Px, -P provides t h e  
equilibrium f o r  t h e  osmotic pressure,  and only the  power Px numerically equal 

t o  t h e  osmotic pressure i s  l e f t  as a cause of movement. 
cu l ty  mentioned i s  set a s ide l .  

Phys.,Vol. 17, p.  549, 1905. 

X 

I n  t h i s  way the  d i f f i -  

lAn exhaustive presenta t ion  o f  t h i s  method'of thought is found i n  Ann. d .  
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§ 5.  Determining t h e  Molecule Dimensions w i t h  t h e  He1 of t h e  Acqui re  
Relationships. 

In  9 3.we found: 
- "  

k* 
. k  -= 1 i. q j  = 1 -+ l2.i-Z PZ, 

i n  which n s i g n i f i e s  t h e  number of dissolved molecules p e r  u n i t  of volume 
P t h e  hydrodynamically e f f e c t i v e  molecule radius .  If we consider t h a t  

and 

i n  which p s i g n i f i e s  t he  mass pe r  u n i t  o f  volume of  t h e  dissolved mater ia l  and 
rn i ts  molecular weight, we get :  

On the  o therhand we found i n  § 4: 

Both of these  equations enable us t o  compute t h e  magnitudes P and N 
of which'N must be producible independently of t he  na ture  o f  the  solvent ,  of 
the  dissolved substance and of t h e  temperature, i f  our theory corresponds t o  
the  f a c t s .  

separa te ly ,  
/305 

We wish t o  car ry  out t he  computation f o r  an aqueous sugar so lu t ion .  
According t o  the  da ta  provided above on the  i n t e r n a l  f r i c t i o n  of t he  sugar 
so lu t ion ,  it then follows f o r  2OOC: 

N P3 = 200. 

According t o  Graham's experiments (computed by Stefan) ,  t he  coe f f i c i en t  
of diffusion of sugar i n  water a t  9.5OC is  0.384, i f  t h e  day is chosen as a 
u n i t  of t i m e .  We wish t o  introduce 
these da t a  i n t o  our formula f o r  t h e  coef f ic ien t  of d i f fus ion;  i n  s p i t e  of t h e  
f a c t  t h a t  they were obtained f o r  10% so lu t ions  and exact v a l i d i t y  i s  not t o  be 
expected of our formula a t  such high concentrations.  

The v i scos i ty  of water a t  9.5" is  0.0135. 

We ge t  

N P = 2.08 * 

From t h e  values found f o r  N P 3  and N P ,  i f  w e  overlook t h e  d i f fe rence  of 
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P , a t  9.5O and ZOO, it follows t h a t  

N = 2.1 1023. 

The value found f o r  N is  i n  s a t i s f a c t o r y  agreement with the  order  of 
magnitude according t o  values found by o ther  meth’ods f o r  t h i s  magnitude. 

Bern, 30 August, 1905. 

(Arrived 19 August 1905) 
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ADDENDUM 

In  the  new addi t ion of t h e  physico-chemical t a b l e s  o f  Landolt and Bornstein 
far  more usefu l  da ta  are found f o r  computing the  magnitude o f  the sugar 
molecule and the  number N of t h e  ac tua l  molecule i n  a gram molecule. 

For the  c o e f f i c i e n t  of diffusion of  sugar i n  water a t  18.5OC and a con- 
cent ra t ion  of  0.005 mol/ l i te r ,  Thovest found (Table, p .  372) t h e  value 0.33 cm2/ 
p e r  day. From a t a b l e  of r e s u l t s  observed by Hosking [Table, p .  81) it i s  /306 
f u r t h e r  found by in te rpola t ion  t h a t  i n  d i l u t e d  sugar solut ions an increase, i n  
the  coef f ic ien t  of v i scos i ty  of 0.00025 corresponds t o  an increase i n  sugar 
content of 1% a t  18.5"G. 

On t h e  b a s i s  of these  d a t a  we f ind 

P = 0.78 mm 

and 

N = 4.15 

Bern , January 1906. 
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